
1

The SCC and the SICSA Multi-core Challenge
Paul Cockshott, Alex Koliousis

The SICSA Multi-core Challenge is an open competition
called by the Scottish Informatics and Computer Science
Alliance to develop multi-core implementations of a set of
predefined problems. So far two rounds of the challenge have
been run which have attracted entries from teams spread
accross Europe. Each round of the challenge has consisted
in the initial publication of a problem with a candidate serial
implementation of the problem. Participants had to select a
programming language, a host architecture and a parallisation
system with the aim of achieving either the fastest implemen-
tation, or the best acceleration relative to the serial version on
that architecture.

The stated aim was “to learn about the strengths and
weaknesses of current systems for parallel programming by
comparing them on a common application and by discussing
the results at a workshop summarising the results.”

The Challenge has had two rounds so far, the first being
reported at a workshop at the Heriot-Watt Edinburgh on 13th
December 2010, the second round reported its results at a
workshop at the University of Glasgow on the 27th May 2011.
We have implemented both of the SICSA challenge problems
so far on the SCC. In the case of the first challenge we
were able to do this in time for the workshop, in the second
case we did not have a working implementation until after
the workshop. We will, in this paper, describe the problems,
describe the SCC implementations and then contrast these with
other published implementations both in terms of design and
in terms of performance.

I. PHASE I
The first phase of the challenge was a concordance problem.

A. Specification of the Concordance application.

a) Given: Text file containing English text in ASCII
encoding. An integer N.

b) Find: For all sequences of words, up to length N,
occurring in the input file, the number of occurrences of this
sequence in the text, together with a list of start indices. Op-
tionally, sequences with only 1 occurrence should be omitted.

In addition to the specification a reference implementation
in Haskell was provided and several reference texts. In practice
most work was done with the longest of these texts, the World
English Bible available from Project Gutenberg which is 4.68
Megabytes in length.

B. Improved Serial Implementation

Prior to doing any parallelisation it is advisable to initially
set up a good sequential version. We were doubtfull that the
first challenge would provide an effective basis for paralleli-
sation because it seemed such a simple problem. Intutively it

TABLE I
SERIAL BENCHMARKS FOR PHASE I ON TWIN CORE 2.6GHZ INTEL

PLATFORM.

OS/Language Printing on file size text file seconds
HASKELL
Windows yes 4792092 WEB.txt >2hours
Windows yes 3580 TMM1.txt 0.824
C Version
Windows no 3580 TMM1.txt 0.028
Windows yes 3580 TMM1.txt 0.029
Windows yes 4792091 WEB.txt 3.673
Windows no 4792091 WEB.txt 0.961

Linux yes 4792091 WEB.txt 2.68
Linux/O3 yes 4792091 WEB.txt 2.25
Linux no 4792091 WEB.txt 1.04
Linux/O3 no 4792091 WEB.txt 0.899

seemed like a problem that is likely to be of either linear
or at worst log linear complexity, and for such problems,
especially ones involving text files, the time taken to read in
the file and print out the results can easily come to dominate
the total time taken. If a problem is disk bound, then there
is little advantage in expending effort to run it on multiple
cores. However this was only an hypothesis and needed to
be verified by experiment. In order to optain an efficient
an non-esoteric sequential implementation, C was chosen as
the implementation language. The algorithm performed the
following steps:

1) Read the whole text file into a buffer.
2) Produce a tokenised version of the buffer.
3) Build a hash table of phrases of up to N tokens and

prefix tree.
4) If the concordance is to be printed out, perform a

traversal of the trees printing out the word sequences
in the format suggested by the Haskell version.

5) If we want it sorted, pipe through Linux sort
The source code is available here
(http://www.dcs.gla.ac.uk/˜wpc/reports/SICSA/concordance.c).
Table I shows the performance of the C implementation was
very much faster than that obtained using the Haskell
reference code. It also seemed to indicate that there was little
practical benefit from parallelising the application since the
greatest part of its time was spent formatting and printing the
output.

C. Parallel Implementation

The concordance problem is hard to parallelise efficiently.
You can not just split a book into two halves, prepare a
concordance for each half and then merge, since we only
have to print out repeated words and phrases. A repeated word
might be missed in this case if it was mentioned once in the
first half and once in the second half. A more complicated

2

TABLE II
PARALLEL VERSION ON 2.6GHZ DUAL CORE.

Concordance benchmark
Program OS seconds
PARALLEL VERSION
concordance2.c Windows 5.63
concordance2.c Linux 2.257
SHELL SCRIPT Avg 4 runs
conc.sh Linux 2.12

approach was needed. We chose to parallelise by getting
several threads to read the entire book, since reading turns out
to be relatively fast. The words themselves are then divided
into disjoint sets - one obvious split would be into 26 sets on
the first letter. We then set each thread to do the concordance
for a disjoint subset of the words. A large part of the time is
also taken up with output – the printed concordance can be 5
times as large as the input file. If distinct cores are producing
this, there is an inevitable serial phase in which the outputs of
the different cores are merged into a single serial file.

As a first parallel experiment a dual core version of the
C programme was produced using the pthreads library and it
was tested on the same dual processor machine as the original
serial version of the algorithm. Conclusions are derived from
the results shown in Table II.

There was no gain using multithreading on windows. It
looks as if the pthreads library under windows simply multi
threads operations on a single core rather than using both
cores. On Linux there was a small gain in performance due
to multithreading - about 17% faster in elapsed time using 2
cores. Since a large part of the program execution is spent
writing the results out, this proves a challenge to improve
using multicore. The first parallel version adopted the strategy
of allowing each thread to write its part of the results to a
different file these were later merged and sorted.

A second parallel verions follows the same basic strategy
as the previous one, but uses the shell, rather than pthreads to
fork parallel processes off and communicates via files using
the following command:

./l1concordance WEB.txt 4 P 1 0 >WEB0.con&

./l1concordance WEB.txt 4 P 1 1 >WEB1.con
wait
cat WEB1.con >>WEB0.con

This has the best performance of the lot as seen in the attached
tables above.

D. SCC Experiment

We have also tried the programme out on the Intel SCC
with relatively poor results.

The SCC is configured as a host processor, which is a
conventional modern Intel x86 chip. Attached to this is the
experimental 48 core SCC chip, each of whose cores runs a
discrete copy of Linux. A major worry here was the problem
of file i/o for the multiple cores. The source file and the output
files were placed on a shared NFS system, and accessed from
there. Looking at the time for one core doing the full task one
can see that it is much slower than a single core on the host
doing the same task. It is unclear how much of this slowdown

TABLE III
SCC PERFORMANCE ON CONCORDANCE.

Implementation seconds
1 core doing full concordance 26.17
1 core doing half concordance 13.48
1 core doing 1/8 concordance 5.59
2 cores doing half each 49
8 cores doing 1/8 each 36
32 cores doing 1/32 each 34
1 host processor doing it all serially 1.03
2 cores on host processor and the shell 0.685

is due to the slow access to files from the daughter copies of
Linux and how much is due to the poorer performance of the
individual cores on the SCC.

The top 3 lines of the table show the effects of trying to do
smaller portions of the workload in an individual core.

We dispatched 32 tasks using the pssh command as shown
in Algorithm 1.

The first line removes any temporary output from a previous
run. We then use pssh to run the script sccConcordance32 in
a shared directory, sending the output to the /shared/stdout
directory/

When all tasks have run the output from all the tasks is
concattenated and sorted to yield the final file.

The script sccConcordance32 invokes the actual concor-
dance task

cd /shared
./l1concord WEB.txt 4 P 31 $(hostname)

The hostname is used to derive a process id which is then
used to select which words will be handled by the task. the
4th parameter to l1concord is the mask that is applied to give
the number of significant bits in the process id, 5 in this case.

It is clear that on a file i/o bound task like this, the SCC is
a poor platform.

E. Results from other teams

At the workshop a number of other implementations were
presented. Singer [?]reported on the use of Java Fork Join
primitives to implement a parallel version of the concordance.
Stewart [?] reported the use of Hadoop Map/Reduce to solve
the problem. AlJabri reported on the use of parallel Haskell [?]
and Open MP[?]. Loidl [?] reported a parallel C# implemen-
tation. Kerridge [?]reported on the use of the new language
Groovy in conjunction with JCSP. The language Python was
used by Sampson [?]in his implementation. Appart from the
results reported for the SCC the other systems were run using
multi-core Xeons clocked at about 2.4GHz.

One problem with analysing the results is that whilst a
word sequence of length 4 is probably long enough to pick
out unique phrases in the Bible, some participants used much
longer word lengths, which will have made their output some-
what more verbose, some also used different input files which
again makes the results hard to interpret. Some participants
only gave relative timingings of their parallel and sequential
implementations rather than absolute times. In the summary of
the results in Table we only show those implementation that

3

Algorithm 1 Shell script to run on host to run concordance on 32 scc cores.

rm /shared/stdout/*
pssh -t 800 -h hosts32 -o /shared/stdout /shared/sccConcordance32
cat /shared/stdout/* |sort > WEB.con

TABLE IV
BEST TIMES REPORTED FOR PHASE 1.

Implementation Tasks N Time
Java Fork/Join 1 4 134.5sec
Hadoop Map/Reduce 57 in Beowulf cluster 10 36sec
Haskell 8 4 27sec
Groovy 12 4 61sec
Python 16 3 2sec
C on SCC at 0.533 Ghz 32 4 34sec
C on MarcHost 2 4 0.6sec

are using the same text file. It is also not always clear whether
people were reporting results that included the time to print
the final concordance.

However the final conclusion with respect to the SCC is
pretty clear. Performances using it fell roughly in the middle
of the range, with speed being of the same order as the
Hadoop and Haskell implementations. The most sucessfully
highly parallel version was certainly the Python one, but by a
small margin the C version on the Marc host beat this using
only 2 processes. Since the SCC example was using exactly
the same C code as the version run on the host, it should have
been fast, so the fact that even using 32 cores it took some 50
times as long is disappointing.

II. PHASE II

The second phase of the challenge was an N-body grav-
itational problem. If we consider the problem of predicting
the motions of a large group of bodies under gravity. This is
inherently a problem of order N2 on a sequential machine
since each body interacts with every other under gravity. As
such it makes a better candidate for parallelisation than the
concordance problem since the latter was of order N and
tended to be I/O bound. There are many example benchmark
programmes that deal with the N-body problem. SICSA took
a C programme from the Programming Languages Shootout
website as a reference implementation and modified it slightly
so that it handled 1024 bodies rather than 5. The starting
positions, masses and velocity vectors of all bodies was
provided as a text file. There were thus 7 floating point
numbers describing each body.

If we consider the general complexity of this problem under
parallelism, it is clear that one component of the run time
should shrink as the number of processors added increases.
During each phase of the simulation we have for each body
to accumulate the forces on it due to all other bodies. Since
these calculations are independent, they can in principle be
done using different processors in parallel. If p is the number
of processors, this stage should have a cost αN2

P for some
constant α. After this calculation has been done, all of the
processors would have to ensure that all other processors
have access to the same updated data on planetary positions.

For a uni-processor this is unproblematic, there is only a
single state vector in RAM. For multiprocessors, depending on
their design, this communications phase can be an appreciable
overhead. If the communications is done naively, this has
a cost in terms of data transfered that ∼ p2N/p because
processor to processor messages will grow as p2 and each
message will have to send data on N/p planets, we can thus
model the overall time taken per simulation step as something
like

t = α
N2

p
+ βNp+ γ (II.1)

For a shared memory multiprocessor, the communications
mechanism is effectively the memory bus in association with
the cache coherency mechanism, since each processor will
have updated its local cache copy of its ’own’ planets’
positions in phase space, and these local cache copies will
have to propagate to the other machines, but this work is also
proportional to Np, since each of the p caches has to read a
complete copy of the positions of each of the planets. Other
communications architectures, including the one we used on
the SCC have a similar cost structure.

A. Approaches taken
The compiler group at the Glasgow University School of

Computing Science has performed evaluations of the Phase
II challenge using a number of our experimental parallelising
compilers[?], [?], [?]. In this paper we will give a detailed
account of one of these, the Lino system, as it was initially
designed with the SCC as its target architecture. We will give
a shorter account of other systems presented at the workshop
because they are provide benchmarks against which the SCC
performance can be measured.

B. Lino
Lino is a scripting language originally targeted at the SCC,

but which also runs on other Linux machines. It allows
Unix shell commands to be placed on ’tiles’ which represent
individual processors in an array of available processors. A tile
in Lino is represented thus [cmd0; cmd1;...] where cmd0
etc is some shell command.

Tiles can be named, and can be laid out in a rectilinear
grid using the — and operators. The — operation can be
used to form a horizontal pipeline of processes running on
different processors. The operator can be used to form a
vertical pipeline. Shell commands communicate with those
on adjacent processes by using appropriately named channels.
Thus the sequence

[ls >East]|[sort <West >sortedfile]
will cause the ls command to run on one core sending its
output to the east, where it is read by the sort command on a
second core whose output goes to sortedfile.

4

Fig. II.1. On the SCC channels pass via FIFOS and RCCE relay processes.

Geometric operations of 90◦ rotation and reflection are
supported on tiles or rectangular tile blocks. Tiles can be
replicated horizontally or vertically.

The Lino compiler translates into standard bash shell scripts.
In the case of the SCC each tile is allocated a processor
core, on other machines each tile becomes a Linux process.
In the latter case the channels are mapped onto appropriately
named Linux FIFO file. On the SCC FIFO files do not work
between cores so a five stage communications process operates
as shown in Figure II.1. Data passed down a FIFO to a RCCE
relay process on the same core and is then sent as RCCE
messages to a corresponding relay process on another core
before being finally piped to another shell command. This
approach allows unmodified C and shell programs to be linked
up in the multi-core environment without the programs having
too know about the underlying communications mechanism. It
also allows us to benchmark parallel applications both on the
SCC and other Intel processors, using the same C programmes
on both machines.

Here is a simple Lino script to run a potentially parallel
version of the N-body problem:

controller = [./starter1 >East <East];
worker = [./nbody >West <West];
main = controller | worker;

The corresponding layout is shown in Figure II.2. There are
two types of tiles : worker and controller. A controller tile runs
the C programme starter1 which goes through the following
sequence

1) Read in the initial position of the planets from a file.
2) Request the worker/s to one simulation step on the data

by:

D wno num workers planet 1 planet 2

Fig. II.2. Top, a 2 core Lino layout for the N-body problem. Bottom,
the format of the packages used in communication between controller and
workers.

Fig. II.3. A layout with 4 worker cores.

a) write the planet data preceded by a “D” header on
standard output,

b) wait for a corresponding “D” package on standard
input.

3) Request the worker/s to update the data by:
a) write the planet data preceded by a “U” header on

standard input
b) wait for the corresponding “U” package on stan-

dard input and remember the new planet positions.
4) If the required number of simulation steps have been

done, send the worker/s an “S” message on standard
output and terminate, otherwise go to step 2.

The N-body programme itself is a lightly modified version
of the reference single processor implementation in C, it sits
in a loop reading messages on standard input. Each message
read from the controller takes the form shown at the bottom
of Figure II.2. The N-body programme branches on the first
character of the message as follows:

• If the header is a “D” then increment the wno field and
write the message to standard output. Then set p= num
workers and simulate the dynamics of 1/p planets for
one timestep, and remember their new positions in phase
space.

• If the header is a “U” then increment the wno field, and
copy into the message the updated positions of the planets
for which worker wno is responsible for before writing
the message to standard output.

• If the message is “S” echo it to standard output and
terminate.

Our approach allows you to vary the number of workers
associated with each controler without changing the C code.
For example to have 4 workers we use the Lino script:

nwcorner = [./nbody >East <South];
swcorner = [./nbody >North <East];
scorner = [./starter4.sh >South <West];
corner = [cat >West <North];
passright = [./nbody >East <West];

5

TABLE V
N-BODY IN LINO ON SCC AND ON AN 8 CORE XEON, TIMES ARE IN

MILLISECONDS/SIMULATION TIMESTEP.

Nbody tiles Total Tiles Xeon time SCC time
16 8.1 2032
8 7.8 1025
4 9.9 702
2 17.1 648
1 30.5 967

TABLE VI
COMPARISION WITH OTHER APPROACHES AT THE WORKSHOP, ALL TIMES

ON 8 CORE XEONS. RESULTS ORDERED BY OVERALL PERFORMANCE.
WHERE MULTIPLE RESULTS WERE REPORTED FOR A GIVEN LANGUAGE

PROCESSOR PAIR WE GIVE THE FASTEST REPORTED.

Language threads time clock Ghz
Glasgow Pascal SSE code 16 1.75 ms 2.4
C++ threaded building blocks, SSE 12 2.05 ms 2.27
Glasgow Pascal AVX code 4 2.12 ms 3.1
Lino on Xeon 10 7.8 ms 2.4
Go 16 8 ms 2.4
C sequential 1 14 ms 2.4
Eden 8 16.6 ms 2.5
C# 12 18.2 ms 2.33
Glasgow Fortran (E#) on CellBE 12 23 ms 3.2
GCC on the CellBE 1 45 ms 3.2
Glasgow Pascal on CellBE 4 48 ms 3.2
Gnu Fortran on CellBE 2 82 ms 3.2
Lino on SCC 2 648 ms 0.533

passleft = [./nbody >West <East];
main = (nwcorner | passright | scorner)_(swcorner | passleft | corner);

This gives the layout shown in Figure II.3. We have tested
layouts for 1,2,4,8, and 16 worker cores on the SCC and on
an 8 core Xeon clocked at 2.4Ghz. On both machines the same
C and Lino code was used. Results are given in Table V. As
with the results in Tables III and II for the Phase I challenge,
the SCC performance was very slow compared to that obtained
on other Intel multi-core chips. The SCC is almost two orders
of magnitude slower than the Xeon. Some of this may be
attributable to the earlier version of GCC used on the SCC, and
some of it to the earlied Pentium design used. But one might
have hoped that these disadvantages would have been offset by
the opportunity too use more parallelism. On the contrary we
find that the SCC implementation peaks at 2 worker processes,
whilst the Xeon peaks at 8.

Fitting Equation II.1 to the data in Table V we obtain for
the Xeon α = 27ns and β = 223ns whereas for the SCC
α = 677ns and β = 94µs. Recall that α is the time to
compute the interaction between two planets and β the time
taken to communicate one planets data between two workers.
The SCC is slower on both counts, but is much slower on
communications. This means that the level of parallelism that
can be supported before the costs of communications comes
to dominate is lower on the SCC.

C. Other Implementations

Thomas Horstmeyer [?] reported on an implementation
using Eden[?]. As Table VI shows, this had a relatively
poor performance, being slower than the single thread C
reference version, and about half the speed of Lino on the
same hardware. The C#[?] implementation reported by Loidl

was similar. Sampson[?] whose Phase I entry was very fast,
reported on an impressive implementation using SSE vector
intrinsics and Threading Building Blocks. This appears to
have one of the fastest performances of all, which is a credit
to the efficiency of the TBB and the gains to be had from
SSE intrinsics. The Glasgow results [?], [?], [?] are polarised
according to the processor and type of language used. Lino and
Go are slower than Pascal, the Cell is slower than conventional
Intel machines, and the SCC is slower than the Cell. This
ranking of machines is born out accross all results reported at
the workshop. The lower clock speed of the SCC is clearly a
factor that has to be taken into account here. If we normalise
for clock speed, the Lino on the SCC falls into the same range
of performance as Gnu Fortran on the Cell.

III. CONCLUSIONS

