Chapter 1

Parallel Image Processing

1.1 Declaring an image data type

Vector Pascal does not have a pre-declared image data type. However one can
readily declare one. There are two common approaches to representing full-
colour image data. In both of them the colour is represented as 3 components
each of 8 bit precision.

1. Display manufactures for PCs usually store the information as two dimen-
sional arrays of 24 bit or 32 bit pixels, made up of red, green and blue
fields with an optional alpha field for colour blending. The fields typically
contain 8 bit unsigned numbers with 0 representing minimum brightness of
the colour and 255 representing the maximum brightness. This approach
simplifies display design but is not so suitable for image processing.

2. The alternative approach separates the colour information out into dis-
tinct planes, so that a colour picture is manipulated as three distinct
monochrome images, one of which represents the red component, one the
green and one the blue. This approach allows image processing procedures
designed to operate on monochrome images to be applied un-modified to
each of the planes of a colour image.

In what follows we use the colour plane model for images’.

type
image (maxplane,maxrow,maxcol:integer)=
array[0..maxplane,0. .maxrow,0..maxcol]of pixel;

This declares an image to be a parameterised data type with a variable number
of image colour planes and a variable number of rows and columns. Whilst this
definition will store also pixels in an 8 bit representation, it is as a signed 8-bit
binary fraction in the range -1..1, instead of as 8-bit unsigned integers.

IThe definition of the image type along with several of the functions over images are given
in Unit Bmp, shown in chapter ??.

negate image

halve contrast

brighten

CHAPTER 1. PARALLEL IMAGE PROCESSING 2

1.2 Brightness and contrast adjustment

The signed fractional representation of pixels lends itself well to image process-
ing applications where arithmetic is done on pixels. We frequently want to
subtract images from one another. Doing this can give rise to negative valued
pixels. Using an unsigned format, negative pixels have no natural representa-
tion. Using signed pixels, 0 represents mid grey, -1 represents black and 1 white.
This representation allows the contrast of an image to be adjusted simply by
multiplying by a constant. Thus if we multiply an image by 0.5 we halve its
contrast. If we multiply it by -1 we convert it to an negative image, etc.

1.2.1 Efficiency in image code

Algorithm 1 illustrates how easy it is to alter the brightness/contrast of an
image by adding/multiplying it with a real value. Although concise this does
not necessarily produce the fastest code. The rules used in expression evaluation
mean ¢m 1 x0.5 is expanded out to im 1,,,,,, X0.5 which is a multiplication of
a pixel by a real. Since reals are higher precision the pixel has to be promoted
to a real before the multiplication. This effectively prevents the original array
expression being vectorised.

Algorithm 1 Which shows simple manipulations of image contrasts and bright-
nesses. The type pimage used, is a pointer to an image.

program contrast ;
uses bmp ;
var
Let im, outim € pimage;
begin
if loadbmpfile('greyl.bmp’,im)then
begin
new (outim ,im "~ .maxplane , im " .maxrow , im " .maxcol);
outimt imt x - 1.0 ;
storebmpfile (‘neg.bmp’ , outim?);
outimt<« im? x 0.5 ;
storebmpfile (‘half.bmp’ , outim?);
outimt<« im? + 0.3 ;
storebmpfile (‘bright.bmp’ , outim?);
end
else writeln(‘failed to load file’);
end .

A more efficient approach is seen in the procedure adjustcontrast shown in
Algorithm 2, where a vector of pixels is initialised to hold the adjustment fac-
tor. By holding it as a vector of fixed point numbers the operation can be

CHAPTER 1. PARALLEL IMAGE PROCESSING 3

=
W R
H EEErnmm
W E R
gnl IIIIII|||||.

0

a) greyl.bmp b) neg.bmp

i & ERImm
LR R
Ol

AL

e) doublecontrast.bmp f) blured version of greyl.bmp

Figure 1.1: Test images used to illustrate brightness, contrast adjustment and
filtering. The images a..e are produced by the program graphio.

CHAPTER 1. PARALLEL IMAGE PROCESSING 4

effectively vectorised on MMX based processors?. Since the fixed point pixel

format only works for | f| < 1 it is necessary to use floating point multiplication
when increasing the image contrast.

Algorithm 2 A more efficient way of adjusting contrast. Note that in this
example the type line refers to a vector of pixels.

procedure adjustcontrast (f :real ; var src ,dest :image);

var
Let / € “ling;
Let r € real;

begin
new (| ,src .maxcol);
{$r-}
M+ f;

if (abs (f) < 1) then dest+ src x I1
else dest+ src x f;

{$r+}

dispose (/);

end ;

Recall that pixels are represented as signed 8-bit numbers, with the con-
ceptual value 1.0 being encoded as +127 and the conceptual value -1.0 being
encoded as -128. Multiplication of pixels proceeds by :

1. Multiplying the 8-bit numbers to give a 16-bit result.
2. Shifting the result right arithmetically by 7 places.

3. Selecting the bottom 8 bits of the result

The 8-bit signed format contains 7 bits of significance plus the sign bit, the 16-
bit result contains 14 bits of significance plus 2 replicated sign bits. It is clear
that this format can not represent multiplication by a number greater than 1.

1.3 Image Filtering

As another practical example of Vector Pascal we will look at an image filtering
algorithm. In particular we will look at applying a separable 3 element convo-
lution kernel to an image. We shall initially present the algorithm in standard
Pascal and then look at how one might re-express it in Vector Pascal. The entire
program is shown in figure 5 and then developed in figures 4, 6 and ??.

21t is a weakness of the Intel MMX instruction-set that it does not support scalar to vector
operations. There are no instructions to operate between a signed byte and a vector of signed
bytes. Motorola processors do not suffer this weakness.

CHAPTER 1. PARALLEL IMAGE PROCESSING 5

Convolution of an image by a matrix of real numbers can be used to smooth
or sharpen an image, depending on the matrix used. If A is an output image,
K a convolution matrix, then if B is the convolved image

By, = Z Z Aytia+iKij
i

A separable convolution kernel is a vector of real numbers that can be applied
independently to the rows and columns of an image to provide filtering. It is
a specialisation of the more general convolution matrix, but is algorithmically
more efficient to implement. If k is a convolution vector, then the corresponding
matrix K is such that K;; = k;k;.

Given a starting image A as a two dimensional array of pixels, and a three
element kernel ¢, ca, c3, the algorithm first forms a temporary array T whose
whose elements are the weighted sum of adjacent rows Ty, = c1Ay_1.. +
c2Ay s + c3Ayi1,,. Then in a second phase it sets the original image to be
the weighted sum of the columns of the temporary array: Ay, = ¢1Ty -1 +
2Ty, + csTy,x + 1. Clearly the outer edges of the image are a special case,
since the convolution is defined over the neighbours of the pixel, and the pix-
els along the boundaries a missing one neighbour. A number of solutions are
available for this, but for simplicity we will perform only vertical convolutions
on the left and right edges and horizontal convolutions on the top and bottom
lines of the image.

1.3.1 Blurring

An image can be blurred using the separable filter (0.25,0.5,0.25). Consider that
this implies: each row in the output image is formed by a mixture of itself and
the rows above and below, with half the amplitude of the signal coming from
the current row and half from the adjacent rows. Similarly, each column is made
up of half from the current column and half from the adjacent column. The net
result is that a pixel’s influence spreads out over a 3 x 3grid. We can examine
the effect of the filter on a point source. Here a single pixel that stands out
against a uniform background in the initial image shows how the initial pixel
spreads out to affect the region around. This is shown in Fig. 1.2.

Figure 1 shows the effect of using this filter on the classic "Mandrill’ test
image.

1.3.2 Sharpening

If we use a filter that has negative weights away from the center, the effect is
to sharpen an image. Suppose we apply the filter (-0.25,1.0,-0.25) to an image,
what will be the result?

The first thing to note is that this filter is non-unitary, that is to say is coef-
ficients do not add up to 1. If we use a unitary filter like the blur (0.25,0.5,0.25)
, the mean contrast of the image is unchanged.

CHAPTER 1. PARALLEL IMAGE PROCESSING 6

Original After blur

Figure 1.2: The effect of a blurring filter on a finite impulse.

Figure 1.3: The image at the top is the original, the bottom left image has been
subjected to a blurring filter (0.25,0.5,0.25), that on the right to a sharpening
filter.

CHAPTER 1. PARALLEL IMAGE PROCESSING 7

Original After applying (-0.25,1,-0.25) | After brightening

Figure 1.4: Effect of a sharpening filter on a finite impulse.

Since the coefficients of our sharpening filter sum to 0.5 and since the filter
is applied twice, once vertically and once horizontally the net effect is to reduce
mean contrast to a quarter of what it was originally. This is shown in Fig
1.4. To compensate we must multiply the image by 4.0 to restore the original
contrast as shown in Algorithm 3. Note the characteristic ’ringing’ induced in
the image by sharpening filters. Figure 1 shows how the picture of a Mandrill
can be sharpened. Note that over the fur, the effect of sharpening is just to
introduce noise. This is for two reasons:

1. This algorithm results in the loss of two bits of precision when the multi-
plication by 4 takes place, the effect is to introduce additional quantization
noise.

2. Sharpening is only visually effective where an feature with high spatial
frequency occurs against a background with lower spatial frequency. The
hair area is all of high spatial frequency. In consequence, the ringing
produced by sharpening overlaps with other hairs, occluding them.

Algorithm 3 The sharpening method.

procedure sharpen (var im :image);

var

Let /i € integer;
begin

i« 1;

pconv (im, - 0.25, 0.998, - 0.25);
end ;

1.3.3 Comparing Implementations

Algorithm 4 shows conv an implementation of the convolution in Standard
Pascal. The pixel data type has to be explicitly introduced as the subrange

CHAPTER 1. PARALLEL IMAGE PROCESSING 8

-128..127. Explicit checks have to be in-place to prevent range errors, since
the result of a convolution may, depending on the kernel used, be outside the
bounds of valid pixels. Arithmetic is done in floating point and then rounded.

Algorithm 4 Standard Pascal implementation of the convolution

procedure conv (cl, c2, c3 : real);
var
tim :array [0..m ,0..m]of pixel ;
Let quarter, half, temp € real;
Let /, j € integer;
begin
for i« 1 to m-1 do
for j«~ 0 to m do
begin
temp¢— theimi_1j X cI + theim;j x ¢2 + theimj;yj x ¢3;
if temp > 127 then temp< 127 else
if temp < -128 then temp<« -128;
tim;j < round(temp);
end ;
for j«~ 0 to m do
begin
tl'mg,j — theimg,j;
tiMm,j < theimpm j;

end ;

for i« 0 to m do

begin
for j«~1 to m-1 do
begin

temp<4— tim;j_1 x cl + tim;jjy1 X c3 + tim;j x c2;
if temp > 127 then temp« 127 else
if temp < -128 then temp+ - 128 ;

tim;j < round(temp);

end ;

theim,-,o — tl-m,"o;

theimijm < tim; m;

end ;
end ;

Because ISO Pascal does not support dynamic arrays the image sizes both
in this version and the parallel version are statically declared.

Image processing algorithms lend themselves particularly well to data-parallel
expression, working as they do on arrays of data subject to uniform operations.
Algorithm 7 shows a data-parallel version of the algorithm, pconv, implemented
in Vector Pascal. Note that all explicit loops disappear in this version, being
replaced by assignments of array slices. The first line of the algorithm ini-
tialises three vectors p1, p2, p3 of pixels to hold the replicated copies of the

CHAPTER 1. PARALLEL IMAGE PROCESSING 9

Algorithm 5 The program dconv, a test harness for image convolution written
to work under several Pascal compilers.

program dconv ;

const
m =255;
repeats =400;
type

pixel = -128..127,;
tplain = array [0..m ,0..m] of pixel ;
var
Let theim, theres € tplain;
Let i € integer;
Let oldtime, ops € real;
procedure showtime ; (see Figure 6)
procedure conv (¢l ,c2 ,c3 :real); (see Figure 4)

begin
oldtime+ secs;
ops+ 12 x (m + 1) x (m + 1) x repeats;
for i+ 1 to repeats do conv (0.2, 0.6, 0.2);
showtime;
writeln(‘done’ |, secs);

end .

Algorithm 6 The procedure showtime.

procedure showtime;

var
Let sec, duration, rate € real;
begin
sec+— secs;
duration+ sec - oldtime;
write(duration, ¢’);
rate« qion
write(o055, ‘M ops per sec’);

oldtime«+ sec;
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 10

Table 1.1: Comparative Performance on Convolution

Algorithm Implementation Target Processor ~ Million Ops Per Second

conv Borland Pascal 286 + 287 6
Vector Pascal Pentium + MMX 61
DevPascal 486 62
Delphi 4 486 86
pconv Vector Pascal 486 80
Vector Pascal Pentium + MMX 820

Measurements done on a 1GHz Athlon, running Windows 2000.

Algorithm 7 Vector Pascal implementation of the convolution

procedure pconv (var theim :tplain ;cl ,c2 ,c3 :real);
var
tim :array [0..m ,0..m]of pixel ;
Let pl1, p2, p3 € array[0..m]of pixel;
begin
pl+ cl;
p2+ c2;
p3+ c3;
timy m—1 < theimg _m—2 X pl + theim; m—1 X p2 + theima m X p3;
timo < theimo;
timm < theimpm;
theimo..m,1..m—1 4 timo..m,0..m—2 X pl + timo..m,22..m X p3 + timo..m1.m-1 X p2;
fheim()__m,() — timO__m,o;
theimo..m,m < tiMo..m,m;
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 11

kernel coefficients c1, c2, c3 in fixed point format. These vectors are then
used to multiply rows of the image to build up the convolution. The notation
theim[] [1. .maxpix-1] denotes columns 1..maxpix-1 of all rows of the image.
Because the built in pixel data type is used, all range checking is handled by
the compiler. Since fixed point arithmetic is used throughout, there will be
slight rounding errors not encountered with the previous algorithm, but these
are acceptable in most image processing applications. Fixed point pixel arith-
metic has the advantage that it can be efficiently implemented in parallel using
multi-media instructions.instruction-set

It is clear that the data-parallel implementation is somewhat more concise
than the sequential one, 12 lines with 505 characters compared to 26 lines with
952 characters. It also runs considerably faster, as shown in table 1.1. This
expresses the performance of different implementations in millions of effective
arithmetic operations per second. It is assumed that the basic algorithm requires
6 multiplications and 6 adds per pixel processed. The data parallel algorithm
runs 12 times faster than the serial one when both are compiled using Vector
Pascal and targeted at the MMX instruction-set. The pconv also runs a third
faster than conv when it is targeted at the 486 instruction-set, which in effect,
serialises the code.

For comparison conv was run on other Pascal Compilers?, DevPascal 1.9,
Borland Pascal and its successor Delphi*. These are extended implementations,
but with no support for vector arithmetic. Delphi is a state of the art commercial
compiler, as Borland Pascal was when released in 1992. DevPas is a recent free
compiler. In all cases range checking was enabled for consistency with Vector
Pascal. The only other change was to define the type pixel as equivalent to the
system type shortint to force implementation as a signed byte. Delphi runs conv
40% faster than Vector Pascal does, whereas Borland Pascal runs it at only 7%
of the speed, and DevPascal is roughly comparable to Vector Pascal.

1.4 genconv

The convolution algorithms presented so far use one dimensional kernels and

work by being applied sucessively in vertical and horizontal directions. As such

they are unable to deal with asymetrical kernels - ones which blur in one direc-

tion and sharpen in another for instance. They also, because they use 8-bit pixel

multiplication, suffer from rounding errors when using sharpening convolutions.
We will now present

procedure genconv (var p :image ; var K :matrix);

which computes a general convolution on an image p producing a modified image

3In addition to those shown the tests were performed on PascalX, which failed either to
compile or to run the benchmarks. TMT Pascal failed to run the convolution test.
4version 4

CHAPTER 1. PARALLEL IMAGE PROCESSING 12

g such that if
Gijk = D D PDigty-—akto—b X Koy
z oy

where a = (K.rows)div2 and b = (K.cols)div2. At the end p is updated with g.

Genconv allows an image to be convolved with an arbitrary two dimensional
matrix of real numbers. If one performs this operation naively with an n x n
matrix of reals against an image of dimensions r x ¢ then the algorithmic com-
plexity will be Orcn?, since each each output pixel is the result of multiplying
n? input pixels by kernel components.

However it is worth observing that for most practical convolutions, there
are repeated matrix elements in the kernel. A 9 element matrix might contain
only 4 distinct values. We can take advantage of this by analysing the matrix to
determine how many unique components it has and then forming pre-multiplied
copies of the input image, one for each unique matrix element in the kernel.
Appropriate selection from these premultiplied copies allows us to compute the
convolution.

Let us define a couple of types and a variable to help with this:

type
premult(rows,cols:integer)= array [l..rows l..cols] of pimage ;
tflag(rows,cols:integer)= array [l..rows ,(l..cols] of boolean ;
var
Let f € “premult;
Let a, b, i, j € integer;
Let flags € “tflag;

We will use f to hold the premultiplied versions of the image such that f; ; =
p x K; ;. The algorithm for constructing the premultiplied matrix of images will
avoid carrying out redundant multiplications.

a,b store the steps away from the center of the kernel.

flags[i,j] is true if f[i j] holds the first pointer to a premultiplied image.

1.4.1 dup

This function returns true if there exists a m,n such that
n+m x K.cols < j+ i x K.cols

and
Km,n = Kz',j

in other words, if the matrix element Kj;; is preceeded in the matrix by an
identical element. If that is true, then the element K;; is a duplicate and this
fact can be taken advantage of in reducing the amount of pre-multiplication
required to perform the convolution

CHAPTER 1. PARALLEL IMAGE PROCESSING 13

Algorithm 8 Main body of the generalised convolution

function dup (i ,j :integer):boolean ; (see Section 1.4.1)
function prev (i j :integer):pimage ; (see Section 1.4.2)
function pm (i ,j :integer):pimage ; (see Section 1.4.3)
procedure doedges ; (see Section 1.4.4)

procedure freestore ; (see Section 1.4.5)

begin
new (f K . rows K . cols);
1< nil;
new (flags K .rows ,K .cols);
flagst« false;

for i< 1 to K.rows do
for j« 1 to K.cols do

else i, j]J«< pm (i, j):

The loops above perform the premultiplication of the input image to form the
matrix of images. If item K ; is a duplicate then we use a previous premultiply
else we perform the premultiply now.

p [l[a ..p .maxrow -a ,b ..p .maxcol -b |:=0;
for i+ 1 to K.rows do
for j« 1 to K.cols do
p [[a ..p .maxrow -a ,b ..p .maxcol -b |:= p [][a ..p .maxrow -a ,b ..p .maxcol -b | +f ~[i j
] [iota O, i + iotal-a, +iota2-b];

The above line forms the convolution by replacing the central region of the
image with the sum of the shifted premultiplied images.

doedges;

freestore;
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 14

Algorithm 9 The function which checks for duplicate kernel elements.

function dup (i ,j :integer):boolean ;

var
Let ¢, d, |, m € integer;
Let b € boolean;
begin
c+ K.cols;
d—j+ixc
b« false;
for I+~ 1 to ¢ do for m«—1 to krows do
b<—bV(K,-,j:Km,,)/\(m+c X I<d);
dup+— b
{ dup:=\or \or ((XK[i,jl=K)and(iota 1 +c*iota 0<d));}

The Vector Pascal statement is more or less a direct translation of the mathe-
matical formulation of the problem. We use or-reduction over both axes of the
matrix to search for duplicates.

end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 15

1.4.2 prev

For duplicated matrix elements K; ; function prev returns the pre-multiplied
version of the image that was previously computed for this value of matrix
element.

This uses classical Pascal constructs to search the matrix for the position of
the premultiplied duplicate and then assigns the duplicate to the return value
of the function. Note that the function does not return when the assignment is
made.

1.4.3 pm

The function pm, (shown in Algorithm 11) premultiplies the image by the real
valued coefficient K; ; returning a new image. The fact that a new pre-multiplied
image has been created is recorded in the flags matrix.

Algorithm 10 Function to find a previous instance of a kernel element.

function prev (i ,j :integer):pimage ;
var

Let m, n € integer;

Let s € real;
begin

S¢— k,',j;
for m«1 to i-1 do
for n~1 to K.cols do
if Knn=s then
preve f4[m, n];
for n1 to j-1 do
if Kin=s then
preve f1]i, n;
end ;

1.4.4 doedges

When performing a convolution on an image, the edges always pose a problem.
The convolution operation determines the value of each output image from the
corresponging neighbourhood in the input image. Around the edges only part
of this neigbourhood exists. Some strategies that can be adopted here are:

1. One can treat the image as a being topologically equivalent to a torus so
that upper the neighbourhood of pixel on the top line of the image con-
tinues onto bottom lines of the image. This approach is computationally

CHAPTER 1. PARALLEL IMAGE PROCESSING 16

Algorithm 11 The premultiplication function.

function pm (i ,j :integer):pimage ;
var

Let x € pimage;
begin

new (x ,p .maxplane ,p .maxrow ,p .maxcol);
adjustcontrast (K;;, p, x1);
flagst[i, j]« true;
pm<— X;
end ;

easy : when finding the neighbours of pixel p; ; we would normally do this
by using the expression p;;,, j+. iterating over a range of values of and
y. To treat the image as a torus we substitute the indexing expression
pL(i+y)mod p.rows, (j+x)mod p.cols]. Although this is computation-
ally easy, it does not make a great deal of sense, since it allows output
pixels to be influenced by input pixels in the parts of the picture that are
furthest away from it.

2. One can mirror the original image around all four edges so that on, for
instance, the top edge the upper neighbour of a pixel is the same as its
lower neighbour. This makes more sense than using a toroidal topology,
and will work well for where the edge of the image is intersected by a
feature that runs a right angles to the edge.

3. One can assume that the edge pixels themselves are replicated to an arbi-
trary degree beyond the edge itself, and compute the edge convolution on
this basis. This is the most parsimonious assumption, and is the one we
use here.

If we have a 5 x 5 convolution matrix and a 100 x 100 image, then we will
have a central subregion of the output image : q[2..97,2..97] which can be
evaluated from the full convolution matrix. The 2-pixel wide vetical margins can
be expressed a sum of columns of images within the premultiplied image matrix.
Thus the 0th output column is the sum of the Oth image columns within the
first three columns of the premultiplication matrix plus the 1st image column
of the 4th column of the premultiplied image matrix and the 2nd image column
of the 5th column of the premultiplied image matrix, etc. Processing the edges
takes many more lines of code because it is a mass of special cases.

$r-

iterate through the planes

top

bottom

left

right

CHAPTER 1. PARALLEL IMAGE PROCESSING 17

Algorithm 12 The edge processing algorithm

procedure doedges ;
var
Let i, j, I, m, n, row, col € integer;
Let r € pimage;
begin
Jo e
j— k.cols;

p [I[0..j -1]:=0;
p [MIo..i -1]:=0;
p [l[1+p .maxrow -j ..p .maxrow |:=0;
p [lll[1+p .maxcol -i ..p .maxcol]:=0;
for n— 0 to p.maxplane do
for I+ 1 to krows do
for m«— 1 to k.cols do
begin
r I, m];
for row« 0 to j-1 do
Pn,row$ Pn,row + rT[n, (FOW +1-j- 1)],

The line above computes the convolution for the top edge, so that the neighbours
above the top are replaced by the corresponding elements of the pre-multiplied
top scan-line.

for row<+ p.maxrow - j + 1 to p.maxrow do
pn,row(_ Pn,row + rT[n1 (I’OW + I 'j B 1)]:
for col~0 to i-1 do for row«< 0 to p.maxrow do begin begin
Pan,row,cors— rt[n, row, (col + 1 + m - i)] + pa,row,cor;
end ;

Using a similar technique we compute the convolution for the left edge. Note
that the construct p[n] [][col] means for plane n select the column col from
all rows.

for col«< 1+ p.maxcol -i to p.maxcol do for row« 0 to p.maxrow do begin begin
Pn,row,col<— Pn,row,col + rT[n];
end ;
{$r+}
end ;
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 18

1.4.5 freestore

The first occurrence of of an image in the pre-multiplied image matrix is disposed
of. The record in the flags matrix, initialised when pre-multiplication occured
is used to keep track of this.

Algorithm 13 The release of temporary store.

procedure freestore ;
var
Let /i, j € integer;
begin
for i+ 1 to K.rows do
for j« 1 to K.cols do
if flagst[i, j]
then dispose(f1[i, j]);
end ;

1.5 Digital Half-toning

Printing images on paper requires that they be converted into a dot pattern
since it is not practical to print with ink of varying shades of grey. Since a
digital image may have a range of grey values one has to map these to dots in
such a way that the average darkness of the dots over a small area of the paper
is the same as the average darkness of the corresponding area of the image. In
this section we present two algorithms to achieve this, one is parallel and the
other inherently sequential.

1.5.1 Parallel Halftone

Algorithm 14 is a parallel technique for half toning.

It involves defining a mask of pixels of varying brightnesses and comparing
the image with this mask. If a pixel is darker than the corresponding mask
position it is printed as black and otherwise as white. The effect is shown in
Fig. 1.6. The mask is chosen to be 8 bytes long to ensure that the operation
will parallelise in the MMX registers. The mask is combined with the picture
using modular arithmetic on the indices g, ¢1-

1.5.2 Errordifuse

It is clear that simply masking, whilst quick, yields annoying artifacts since the
human eye is well able to pick out the repetitive motifs embedded within the
mask. Another disadvantage is that the mask will approximate the brightness

19

PARALLEL IMAGE PROCESSING

CHAPTER 1.

filter to Mandrill.

10n

o LR o
SepEseoaTesoY
SR,

i
: NIRRT
Sy R SR
o #m.m.m.w«»wwa L
«tnv“ﬁwm.ww%.i

ﬁn.»._.»;u...

Effect of applying a diagonal edge detect

Figure 1.5

Mandrill rendered with a 4 x 8mask.

Figure 1.6

CHAPTER 1. PARALLEL IMAGE PROCESSING 20

Algorithm 14 Parallel half toning using a fixed mask

procedure halftone (var src ,dest :image);
const
black :pixel =-1.0;
white :pixel =1.0;
pattern: array [0..3,0.7] of pixel =((0.75,-0.95,0.0,0.5,-0.3,0.33,-0.2,-0.7),
(0.62,-0.75,-0.1,-0.45,0.8,0.25,0.95,-0.6),
(-0.15,0.3,0.4,-0.8,-0.9,-0.5,0.15,0.17),
(-0.25,0.9,0.7,-0.33,-0.4,0.2,0.1,-0.82));

begin
dest< pattern,, mod 4,10 mod 85
dest { white if src > dest
black otherwise ’
end ;

of the picture with a spatial wavelength equivalent to twice the size of the mask
itself. It thus responds poorly to sharp edges.

If one is willing to sacrifice parallelism, error diffusion techniques yield a
much better result, as is shown in Fig. 1.7.

Algorithm 15 compensates for the quantization errors by adjusting the likeli-
hood of using black or white for neighboring pixels. Once it has decided whether
to render a pixel in black of white, it computes the quantization error in el. This
error term is then spread around the pixels to the right and below by subtracting
weighted components of it to a temporary source image.

When the corresponding pixels in the temporary source come to be pro-
cessed, the likelihood of their being rendered black or white is now biased away

Figure 1.7: Mandrill rendered using error diffusion.

CHAPTER 1. PARALLEL IMAGE PROCESSING

21

Algorithm 15 Classic error diffusion, non parallel code.

procedure errordifuse (var src ,dest :image);
var

Let temp € “image;

Let i, j, k € integer;

Let black, white € pixel;

Let el, €2, e3 € real;

Let r1, r2 € integer;

begin
black+ -1.0;
white+ 1.0;

new (temp , src .maxplane , src .maxrow ,src .maxcol);
{ 1.0 ifsrc>0
dest <

—1.0 otherwise ’
tempt< src;
for k< 0 to src.maxplane do
for i+ 1 to srcmaxrow -1 do for j< 1 to src.maxcol -1 do
begin
r1<+ random;
r2< random;
e3<—{0'2 ifri >r2
—0.2 otherwise ’
white if temp?lk, i, j] > 0.0
black otherwise ’
el desty ;- temptlk, i, j];
temp?tlk, i, j + 1]« temptlk, i, j + 1] - (0.45 - e3) x el;
temptlk, i + 1, j]+ temptlk, i + 1,]] - (e3 + 0.375) x el;
temptlk, i + 1, j - 1]« temp?tlk, i + 1, j- 1] - (0.125) x el;
end ;
dispose (temp);

dest;m-,j —

end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 22

10x10 5x8 25x30
Figure 1.8: Naive re-sampling used to scale pictures introduces artifacts.

from its original value by this error term.

Suppose a pixel had the value 0.2 and was rendered as 1.0. The error term el
would be 0.8, which would be subtracted from the surrounding pixels. Sufficient
might be added to the pixel to the right to trip it from its original rendering as
white to a rendering as black.

The way in which the errors are distributed is randomised using the term
€3. In the absence of this random term one gets visually intrusive ’brain coral’
patterns in the half toning.

1.6 Image Resizing

A very common operation in dealing with images is to resize them, making them
larger or smaller. This may be done either uniformly - preserving their aspect
ratio - or unevenly so that the shape as well as the size of the image changes.

In a naive resizing algorithm we simple scale the indices of the pixels in the
source image by the ratio of the images sizes. Suppose we wanted to halve the
size of an image, then we could simply select every second pixel. As can be seen
in Fig. 1.8, a number of unpleasant artifacts occur with this method. When
shrinking an image, thin lines can loose pixels, or even vanish. When enlarging
an image, what were originally square pixels become oblong, something which
is particularly disconcerting when looking at text. Collectively these errors are
called aliasing.

The removal of these artifacts is termed anti-aliasing. The artifacts arise
because of the spatial frequencies possible in pictures of different sizes. The
notion of spatial frequency is illustrated by the test image shown in Fig. 1.1.
These show horizontal and vertical gratings of varying spatial frequency. The
Nyquist theorem states that the maximum spatial frequency, measured in os-
cillations per inch, that can be supported by an image is half the number of
pixels per inch. The highest frequency in the images shown in Fig. 1.1 corre-
spond to this limit. If we apply the blurring convolution [0.25,0.5,0.25] to the
test image, Fig. 1.1.a to produce image Fig. 1.1.f, we have the effect of mak-

CHAPTER 1. PARALLEL IMAGE PROCESSING 23

10 x 10 dx8 25 x 30

Figure 1.9: Anti-aliased rescaling using blurring and interpolation reduces arti-
facts.

ing the highest spatial frequency invisible. Thus the blurring convolution can
be viewed as a subtractive spatial frequency filter that selectively removes the
highest frequency information.

Now consider what happens when one increases the size of an image. The
effect is to introduce a new spatial frequency bands into the image. Since these
frequencies are higher than any that we have had up to now, what will occupy
them?

If we use a naive sampling algorithm, simply replicating each original pixel,
the higher frequency bands are populated with Moiré fringe noise, generated by
the interference between the old Nyquist limit frequency and the new Nyquist
limit frequency. What we want instead, is for these wavebands to be empty.
We can achieve this by using an interpolation procedure which fills in new pixel
positions as a weighted average of the neighboring pixel positions.

Conversely, if one reduces the size of an image, one removes certain possi-
ble spatial frequencies. but if one uses a naive approach, some of the original
high frequency information is erroneously transfered to lower frequencies. The
answer in this case is to apply a blurring filter first to remove the high fre-
quency information before sampling. Figure 1.9 shows the effect of blurring
before shrinking and of interpolating when expanding.

If we resize an image, we have to take into account the possibility that the
scaling in the horizontal and vertical directions will differ, it is thus desirable
to resize it in two steps, once in each direction. Consider first the problem of
expanding an image. Horizontal interpolation involves the process shown in Fig
1.10.

Here we introduce a new sample point r between two existing sample points
p,q. The value of r should be a weighted average of the values at the known
points. If r is close to p then p should predominate and vice-versa for r. The
simplest formula that achieves this is

_ d(p,r)
= P5(p,q)

CHAPTER 1. PARALLEL IMAGE PROCESSING 24

Ol

p
-
N\

q
O
pr -
pq -

Figure 1.10: Horizontal interpolation of a new pixel position r between existing
pixel positions p and gq.

where §(a, b) is the horizontal distance between points a, b.

It is clear that in the general case of horizontal resizing, the weights ggg ’3
will differ for sequential pixels. As such horizontal rescaling lends itself poorly
to SIMD parallelization. Vertical rescaling can be parallelized, since we can
compute a complete new scan line as the weighted average of two original scan
lines. It is therefore important to perform expansion in the horizontal direction
first followed by rescaling in the vertical direction. This maximises the share of
the work that can be run in parallel. Algorithm 16 illustrates this.

1.7 Horizontal Resize
This is done with the procedure
procedure resizeh (var src ,dest :image);

This will change the size of an image in the horizontal direction. Dest must
be same height as src. Its internal operation is shown in Algorithm 17.

1.8 Vertical Resizing

1.9 Horizontal Interpolation
This is performed by procedure
procedure Interpolateh (var src ,dest :image);

This will interpolate an image in the horizontal direction. Src and dest must
differ in size only in the horizontal direction.

This is an inherently serial procedure and as such used classical Pascal loops.
It’s internals are shown in Algorithm 19 .

CHAPTER 1. PARALLEL IMAGE PROCESSING 25

Algorithm 16 Resize an image.

procedure resize (var src ,dest :image);

This invokes the horizontal and vertical resize functions to do the effective work.
Since vertical interpolation is run in parallel whereas horizontal interpolation
must run sequentially, we want to do as much work as possible in the vertical
resizing. If we are making a picture higher then it is quicker to resize horizontally
and then resize vertically.

If we are reducing the height of a picture the reverse holds.

var
Let t € pimage;
begin
then
begin
new (t ,src .maxplane ,src .maxrow ,dest .maxcol);
resizeh (src, t1);
resizev (t1, dest);
dispose (t);
end
else
begin
new (t ,src .maxplane ,dest .maxrow src .maxcol);
resizev (src, t1);
resizeh (t1, dest);
dispose (t);
end
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 26

Algorithm 17 Horizontal resize an image.

var
Let n € real;
Let t, av € pimage;
Let / € integer;
begin

14src.maxcol .
ne 1+4dest.maxcol’

if n<1
else
if n=1
then dest+ src
else
if n<?2
then
begin

We can not simply select every nth pixel on a row, since this would allow high
frequency noise to penetrate the reduced image. We have to filter out this noise
first. The way we do it is by first forming a new image each of whose pixels is is
the average of the corresponding two horizontally adjacent pixels in the source.

new (t ,src .maxplane ,src .maxrow ,src .maxcol);
new (av ,src .maxplane ,src .maxrow ,src .maxcol);
adjustcontrast (0.5, src, t1);

avte tf;
av "~ [|ll[src .maxcol |:=src [|[][src .maxcol];

av now contains an horizontally blured version of the source.

dispose (t);
interpolateh (av?, dest);
dispose (av);

end

else

begin

Apply the shrinking recursively to get down to a shrinkage factor < 2

new (t ,src .maxplane ,src .maxrow , (14+src .maxcol) div 2 + -1);

by 2 resizeh (src, t1);
by n/2 resizeh (tt, dest);
dispose (t);
end

end ;

by 2
by n/2

CHAPTER 1. PARALLEL IMAGE PROCESSING

27

Algorithm 18 Vertical Resize Routine

procedure resizev (var src ,dest :image);

Change the size of an image in the vertical direction. Dest must
be same width as src.

var
Let n € real;
Let t, av € pimage;
Let rows € integer;

begin
N e o
else
if n=1 then dest« src
else
if n<2
then
begin

this filters in the vertical direction

new (t ,src .maxplane ,src .maxrow ,src .maxcol);
new (av ,src .maxplane ,src .maxrow ,src .maxcol);
adjustcontrast (0.5, src, t1);
for rows«— 0 to src.maxrow -1 do

avte tt;
av " [][src .maxrow]:=src [|[src .maxrow];

av now contains a vertically blurred version of the source.

dispose (t);
interpolatev (av?, dest);
dispose (av);

end

else

begin

Apply the shrinking recursively to get down to a shrinkage factor < 2

rows<«— < m2axrow :

new (t ,src .maxplane ,rows , (src .maxcol));
resizev (src, t1);
resizev (tT, dest);
dispose (t);
end
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 28

Algorithm 19 Horizontal Interpolation routine.

var
Let ratio, p, q € real;
Let i, j, k, | € integer;

begin
: 14-src.maxcol .
ratio< 1+dest.maxcol’

for j« 0 to dest.maxrow do
begin
for k< 0 to dest.maxcol do
begin
p+ k x ratio;

P holds the horizontal position in the source that the
data must come from.

I+ trunc (p);

1 holds the sample point below p and 1+1 holds the position above it

g p-1;

q holds the distance away from 1, that p was.

if |+ 1> src.maxcol then dest [|[j .k |:=src [|[j ./]

else
dest [|lj .k 1:=src [Ili ./ 1*(1-q)+src [Ili .1+ 1*q ;

Interpolate in the horizontal direction using linear weighting.

end ;
end ;
end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 29

1.10 Interpolate Vertically
This is performed by the procedure
procedure Interpolatev (var src ,dest :image);

Interpolates in the vertical direction. Src, and dest must differ in size only
in the vertical direction. This is parallel code, and uses array expressions. The
internals of the procedure are given in Algorithm 20.

Algorithm 20 Vertical interpolation of image lines.

var
Let / € “line;
Let pp € pixel,
Let i, j, k € integer;
Let ratio, p, q € real;
begin
new (| ,dest .maxcol);

: 14-src.maxrow .
ratio<— dest.maxrow+1 "

for j« 0 to dest.maxrow do
begin

p+ j X ratio;

k< trunc (p);

g+ p - k;

pp+ q;

convert weight to pixel

< pp;

replicate to a line to allow efficient vectorisation

for i<+~ 0 to src.maxplane do if k + 1> src.maxrow then dest; < src;, x IT

else
dest;j¢— srcii4k X I1;
pp<1-g;
"« pp;
for i<~ 0 to src.maxplane do dest;j« dest;; + srcj, x I1;
end ;
dispose (/);

end ;

CHAPTER 1. PARALLEL IMAGE PROCESSING 30

At 253 x 169 Original 512 x 512 At 598 x 756

Figure 1.11: Effect of applying resize to barbara.bmp.

